|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
Object org.apache.spark.mllib.evaluation.RankingMetrics<T>
public class RankingMetrics<T>
::Experimental:: Evaluator for ranking algorithms.
Java users should use RankingMetrics$.of
to create a RankingMetrics
instance.
param: predictionAndLabels an RDD of (predicted ranking, ground truth set) pairs.
Constructor Summary | |
---|---|
RankingMetrics(RDD<scala.Tuple2<Object,Object>> predictionAndLabels,
scala.reflect.ClassTag<T> evidence$1)
|
Method Summary | ||
---|---|---|
double |
meanAveragePrecision()
Returns the mean average precision (MAP) of all the queries. |
|
double |
ndcgAt(int k)
Compute the average NDCG value of all the queries, truncated at ranking position k. |
|
static
|
of(JavaRDD<scala.Tuple2<T,T>> predictionAndLabels)
Creates a RankingMetrics instance (for Java users). |
|
double |
precisionAt(int k)
Compute the average precision of all the queries, truncated at ranking position k. |
Methods inherited from class Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface org.apache.spark.Logging |
---|
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning |
Constructor Detail |
---|
public RankingMetrics(RDD<scala.Tuple2<Object,Object>> predictionAndLabels, scala.reflect.ClassTag<T> evidence$1)
Method Detail |
---|
public static <E,T extends Iterable<E>> RankingMetrics<E> of(JavaRDD<scala.Tuple2<T,T>> predictionAndLabels)
RankingMetrics
instance (for Java users).
predictionAndLabels
- a JavaRDD of (predicted ranking, ground truth set) pairs
public double precisionAt(int k)
If for a query, the ranking algorithm returns n (n < k) results, the precision value will be computed as #(relevant items retrieved) / k. This formula also applies when the size of the ground truth set is less than k.
If a query has an empty ground truth set, zero will be used as precision together with a log warning.
See the following paper for detail:
IR evaluation methods for retrieving highly relevant documents. K. Jarvelin and J. Kekalainen
k
- the position to compute the truncated precision, must be positive
public double meanAveragePrecision()
public double ndcgAt(int k)
If a query has an empty ground truth set, zero will be used as ndcg together with a log warning.
See the following paper for detail:
IR evaluation methods for retrieving highly relevant documents. K. Jarvelin and J. Kekalainen
k
- the position to compute the truncated ndcg, must be positive
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |